
SAND2000-2757

Evolved and Timed Ants:

Optimizing the Parameters of a Time-Based Ant
System Approach to the Traveling Salesman

Problem Using a Genetic Algorithm.

Damon Cook

New Mexico State University

Computer Science Department

August 4, 200O

Sandia National Laboratories

Department 6238 : Software Engineering

Manager : Michael Tebo

Technical Advisor : David Harris

Abstract - This project uses a Genetic Algorithm to optimize the Ant System approach to the
Traveling Salesman Problem. The Ant System approach, practitioned by E. Bonabeau, M
Dorigo and G. Theraulaz is modeled after the behavior of an ant colony. The Genetic Algorithm
that I am using is similar to those discussed by D. Goldberg. In addition to the elements
discussed by Bonabeau, et al., this program uses a time-based system to more closely resemble a
biological ant colony. This time-based system more closely mimics its biological counterparts by
basing the movements of the ants on the relative time taken between cities. The results indicate
that this system is accurate for small problems and also reasonably accurate for medium
problems.

1. Introduction

When solving search problems with computers, a common approach is to calculate every possible
solution and then choose the best of those as the answer. Unfortunately, some problems have
such large solution spaces that this is impossible to do. These are problems where the solution set
grows exponentially with the amount of inputs. These problems are referred to as n-p hard or n-p
complete problems. One such problem is The Traveling Salesman Problem (TSP). This paper
discusses a method for solving the TSP that is based on the natural foraging system of an ant
colony. This Ant Colony (AC) approach is a kind of educated guess system. Random solutions
are tried and then better solutions are found based on the results of the earlier tries. This is a way
of “optimizing” a solution, as opposed to “solving for” the solution. Of course, the AC also has
several inputs. The question of which are the best inputs is another problem that can be
optimized. In this case, we used a Genetic Algorithm (GA), another optimizing approach, to
optimize these parameters.

1.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a problem taken from a real life analogy. Consider a
salesman who needs to visit many cities for his job. Naturally, he would want to take the shortest
route through all the cities. The problem is to find this shortest route without taking years of
computation time. Originally the TSP was presented as a contest with a path through only a few
cities. The first thought that would come to any programmer’s mind when presented with the TSP
would be to check every possible route and take the shortest one as the answer. Unfortunately,
the number of routes grows exceptionally fast. If this problem only needed to find the route with
10 cities, it would be manageable. If there were 100 cities, the number of possible routes would
have over 150 digits. Obviously, this method quickly becomes unfeasible. Today, solutions have
been proposed that can solve for as many as 13,509 cities (this was done with a custom algorithm
and may have taken as long as four years; see [141 for more information).

The applications of the TSP are fairly numerous. It can be applied to anything from drilling holes
in printed circuit boards to designing fiber-optic communications networks to coordinating
military maneuvers to routing helicopters around oil rigs.

There have been several types of approaches taken to solving the TSP. They include:

l Heuristic approaches [1,2]

l Memetic algorithms [6, 121

l Ant colony optimizations [7, 1 l]

l Simulated annealing [3,9]

l Genetic algorithms [5, lo]

l Neural networks [4]

l And various other methods for more specific variations of the TSP.

These approaches do not always find the true optimal solution. Instead, they will often
consistently find good solutions to the problem. These good solutions are typically considered to
be optimal simply because they are the best that can be found. This is what is often actually
meant by the term optimal.

2

1.2 Ant Colony Optimization

Ant Colony or Ant System optimizations are based on the natural foraging system found in an ant
colony. For example, we’ve all seen how ants will make a long line from their anthill to a food
source. Biologists have found that this is done using a pheromone (a chemical that other ants can
detect easily) trail left by each ant. When an ant finds a food source, its pheromone trail will lead
other ants to that same food source. In just a short time, there will be a large line of ants moving
back and forth between the food and the anthill. If the food source is removed, the ants will
continue to follow the trail for a time but will eventually move off in a more random pattern until
they find another food source.

Similarly to ants forming a line to a food source, programmed “ants” can be used to form a line
through the shortest path of the TSP. The “ants” leave behind some amount of “pheromone”
wherever it goes. When another “ant” needs to decide which path to take, the “pheromone” on the
trail will influence it to take the same path as the previous ant.

Simply leaving pheromone on a path is not enough to get the optimal solution. Obviously, the
“ants” cannot simply follow the same paths every time. Other factors need to be worked in. The
“ant” cannot simply take the path with the most pheromone; it must have a chance to randomly
choose a new path to find a better solution to the problem. This is done by applying simple
probability mathematics to the decision that the “ant” will make. The more “pheromone”, the
more likely the ant is to choose the path, but there is still a chance that it will take a different path.
Additionally, the “pheromone” can have an “evaporation rate” which would also add to the
probability that an “ant” would find a newer, better path.

The main goal is to modify the behavior of individual ants to produce a desired response in the
colony behavior. This is done with the use of several parameters. These parameters were
optimized using a Genetic Algorithm (GA).

1.3 Genetic Algorithms

A genetic algorithm is based on the same idea as the theory of evolution. Basically, several
random sets of parameters are applied to an algorithm and a fitness value is returned for each.
Based on these fitness values, the best sets are mixed together and new sets are again applied to
the algorithm until an optimal set of parameters is obtained. This effect is usually obtained by
breaking the genetic algorithm into a few small parts. The main parts are the fitness function and
the evolution function.

The evolution function produces a string of inputs (often a string of bits that are encodings of the
input parameters) then asks the fitness function for a fitness value for that string. When several
strings have been assigned a fitness value, the evolution function takes the best strings, mixes
them together, sometimes throws in a “mutation” to the strings and then sends the results back as
new input strings.

The fitness function of a genetic algorithm takes in a string of inputs and runs them through the
process that is being evaluated. Based on the performance of the inputs, the function returns a
fitness value. In the case of the TSP, the fitness function returned the total length or weight of the
path found.

2. Some Earlier Approaches to Solving the Traveling Salesman Problem

There have been many approaches to solving the Traveling Salesman Problem (TSP). These
approaches range from a simple heuristic algorithm to algorithms based on the physical workings

3

of the human mind to those based on ant colonies. These algorithms all have the same ultimate
goal: in a graph with weighted edges, find the shortest Hamiltonian path (the path with the
smallest sum of edge weights). Unfortunately, this goal is very hard to achieve. The algorithms
therefore settle for trying to accomplish two smaller goals: (1) To more quickly find a good
solution and (2) To find a better good solution. A good solution is one that is close to being
optimal and the best of these good solutions is, of course, the optimal solution itself.

2.1 Heuristic Algorithms and the TSP

The word ‘heuristic’ means “A rule of thumb, simplification or educated guess that reduces or
limits the search for solutions in domains that are difficult and poorly understood. Unlike
algorithms, heuristics do not guarantee optimal, or even feasible, solutions and are often used
with no theoretical guarantee.” In contrast, an algorithm is defined as “a precise rule (or set of
rules) specifying how to solve some problem.” To combine these together into a heuristic
algorithm, we would have something like “a set of rules specifying how to solve some problem
by applying a simplification that reduces the amount of solutions checked”. In other words, the
algorithm is the instructions for choosing the correct solution to the problem while the heuristic is
the idea of how to shrink the list of possible solutions down to a reasonable size.

An example of a heuristic approach to the TSP might be to remove the most weighted edge from
each node to reduce the size of the problem. The programmer in this situation may assume that
the best solution would not have the most weighted edge. Upon close inspection, this heuristic
may not actually give the best solution, maybe not even a feasible solution (if all of the most
weighted edges from each node are connected with the same node) but it may be a calculated risk
that the programmer takes.

The main idea of a heuristic approach to a problem is that, although there is exponential growth in
the number of possible solutions to the problem, evaluating how good a solution is can be done in
polynomial time.

In dealing with the TSP, the most common uses of heuristic ideas work with a local search.
Similarly to the above example, the heuristic does not try to encompass every possibility of the
problem at hand; instead it attempts to apply common sense to shrink the problem to a
manageable size.

Perhaps the most-used local search heuristic that is applied to the TSP is the n-opt method
developed by Lin and Kernighan [2]. It simply takes a random path and replaces n edges in it
until it finds the best of those paths. This is typically done where n is set to 2 or 3 [11. These
methods were applied to several different problems. Notably, they were able to find the optimal
solutions for a 42-city problem 4 out of 10 times and the optimal solution to a 4%city problem 2
out of 10 times [l] (the 10 times in these were running concurrently so the optimum solution was
found in each run of the program).

2.2 Simulated Annealing and the TSP

Simulated Annealing is a method that is based on the cooling of a physical system. The general
idea is that there is a temperature (T) and a cost function (H). In our case, the cost function is the
sum of the weights of the edges in our circuit. In the beginning, there is a random solution to the
problem. At each iteration, a change is proposed to this solution and that change is evaluated
based on the cost function and the temperature. If the cost function decreases then the change is
accepted. If the cost function does not decrease then the change is accepted or rejected based on
the temperature. The higher the temperature, the better the chance that the change will be

4

accepted. As time progresses, the temperature decreases and eventually there is no possibility for
a change to occur without the cost function decreasing. This was first described by Metropolis, et
al. [3]. Using this method, researchers such as Lin, et al. were able to get to within two units of
the optimal cost for problems up to a size of 100 [9].

2.3 Neural Networks and the TSP

According to Haykin, S. (1994), Neural Networks: A Comprehensive Foundation, NY:
Macmillan, p. 2:

“A neural network is a massively parallel distributed processor that has a natural propensity for
storing experiential knowledge and making it available for use. It resembles the brain in two
respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to store the
knowledge.”

Basically, a neural network (NN) is made up of many independent units (neurons) and
connections between them. The connections are given various weights based on a “learning
process”. Based on the sum of the products of adjoining neurons and the weights of the
connecting edges, each neuron finds a value. Additionally, if the value of one neuron changes
then the values of all the adjoining neurons also change. This creates a ripple effect that can
change the values of every neuron (although it could also change none of them).

An NN can be applied to a TSP with n cities. This is done by creating n2 neurons. The output of
each neuron (vxi) represents whether city x is visited as the i-th city in the sequence. It is a 1 if
this is true or a 0 if it is not. Additionally, the amount d,, is applied to the calculations as the
distance between cities x and y. This is done using various mathematical formulas that I will not
list here. Some of the various implementations were reviewed by Matsuda [4].

2.4 Genetic Algorithms and the TSP

A genetic algorithm is based on the same idea as the theory of evolution. Basically, several
random sets of parameters are applied to an algorithm and a fitness value is returned for each.
Based on these fitness values, the best sets are mixed together and new sets are again applied to
the algorithm until an optimal set of parameters is obtained. This effect is usually obtained by
breaking the genetic algorithm into a few small parts. The main parts are the fitness function and
the evolution function.

The evolution function produces a chromosome (an encoding of the parameters which is often
represented as a string of bits) then asks the fitness function for a fitness value for that
chromosome. When several chromosomes have been assigned a fitness value, the evolution
function takes the best ones, mixes them together, sometimes throws in a “mutation” to the strings
and then sends the results back as new chromosomes. In the case of the TSP, the parameters
might be the order of the nodes through which the path must go.

The fitness function of a genetic algorithm takes in a string of inputs and runs them through the
process that is being evaluated. Based on the performance of the inputs, the function returns a
fitness value. In the case of the TSP, the fitness function might return the total length of the path
found. Genetic algorithms and their applications to the TSP are described by Goldberg [5]. He
points out that close to optimal solutions have been found using these methods for problems of up
to a size of 200 by researchers such as Bonomi and Lutton [IO].

5

2.5 Memetic Algorithms and the TSP

A memetic algorithm (MA) is really a combination of several different techniques. Generally, an
MA can be thought of as an algorithm that combines local search heuristics with a crossover
operator (the same type of mixing and matching that happens with a GA’s evolution function).
Despite this, the difference between an MA and a GA is very distinct. As opposed to the fitness
functions of GAS, MAs use a local search heuristic to determine how the parameter definitions
will be modified at each iteration. For example, an MA might use simulated annealing to find a
solution with some parameters and return that value to the crossover operator just like a GA
would return a value from a fitness function. For this reason there are many other terms used to
refer to MAs including Hybrid Genetic Algorithms, Parallel Genetic Algorithms, and Genetic
Local Search Algorithms. The research in MAs was most notably conducted by Mascato [6].
Researchers such as Miihlenbein have shown MAs to be near-optimal with sizes at least as large
as a 200-city problem [121.

2.6 Ant Colony Algorithms and the TSP

Ant-based algorithms are based on studies of ant colonies in nature. The main idea in these
algorithms is that the behavior of each individual ant produces an emergent behavior in the
colony. When applied to the TSP, individual agents (“ants”) traverse the graph of the problem,
leaving a chemical (pheromone) trail behind them. At each node it comes to, an ant must decide
which edge to take to the next node. This is done by checking each edge for pheromone
concentration and applying a probability function to the decision of which edge to choose. The
higher the concentration of pheromone, the more likely the ant is to choose that edge. Also, to
avoid stagnation in travel, the pheromone is given an evaporation rate so that at each iteration the
pheromone loses a certain percentage on each edge. This method was researched originally by
Dorigo, et al. [7]. This method has been shown to do better than other algorithms on random 50-
city problems as well as finding the optimum solutions for problems with up to 100 cities [l I].

3. Methods Used

This project combined two computer optimization methods: a variation on the Ant Colony (AC)
method and the Genetic Algorithm (GA) method. These methods were combined together to
optimize a solution for the Traveling Salesman Problem (TSP).

3.1 The Time-Based Ant Colony

A typical Ant Colony (AC) program would run the “ants” through the “map” of the problem in
one iteration, followed by a time of dropping pheromone on various edges and then repeat. The
program used here was slightly different. In an attempt to more closely model the natural order
of an ant colony, a time system was introduced. The basic idea of this system is that a time loop
is run as the main loop. At each iteration, the time would increase by a certain amount. Also, at
each iteration, each “ant” would move further down its path. When it reached a new node, it
would choose which node to travel to next while at the same time leaving some pheromone on the
path it had just taken. The other difference is that after an “ant” made a complete route (through
every node) it would turn around and head back the exact same way it had gone. Some basic
pseudocode might be as follows:

6

for time = 0 to max-time STEP increment-value

for i = 1 to number-of-ants

if (ants[i] has time left to get to the next node 1

decrement ants[il 's time left by increment-value

else

pick which node to move to next, set ants[il's time left,

and update the pheromone on the edge just passed

The decision-making process that each “ant” went through when deciding which node to move to
next was loosely based on the decision-making process of the AC system described by Bonabeau,
et al. [S]. Basically, a list of possible choices was formed (nodes that the “ant” had not yet visited
on its route), then the “ant” had a random chance of picking the next node based on pheromone or
not. If the “ant” did not choose based on pheromone, then it picked a random node from its list.
If it did base its decision on pheromone, then it evaluated the nodes in its list based on their
distance from the current node as well as the amount of pheromone on the path to that node as
follows:

Pick next node X to satisfy the equation:

where C is the current node, A is the set of all unvisited nodes, d is the
distance from C to X, p is the amount of pheromone on the path between C and X, E is the
distance factor (dist-fact) and F is the pheromone factor (pher-fact).

Another important part of any AC system, is the evaporation of the pheromone. The pheromone
can’t just be left to sit forever on a path or fewer new paths will be chosen. This means that some
sort of “evaporation” of the pheromone must occur. In this time-based system, the evaporation
occurs at regular intervals. At these regular intervals, the pheromone would be reduced by some
percentage called an “evaporation rate”.

When an “ant” had gone through its whole route, and then returned to its starting point, the time it
took the ant was compared to the best recorded time. If it was a better amount of time, then the
length of the path it took was compared to the best recorded path length. Finally, if the path
length was shorter than the best recorded, it was locally optimized and then pheromone was
dropped on this locally optimized best path. The local optimization basically went through each
node in the path, switched it with every other node and if it made a better path, the switch was
kept. If not, it was returned and the next switch was tried. This is one of the simplest local
optimization procedures that could have been used. The pseudocode for this local optimization
might be as follows:

for i = 2 to length of Best-Path - 1

for j = 3 to length of Best-Path

if(i does not equal j)

temp = get_path-weight(Best_Path) ;

7

switch(Best-Path[il and Best-Path[jl)

if(get_path-weight(Best_Path) > temp)

switch(Best-Path[il and Best-Path[j])

In this system, there were several inputs. These inputs were optimized using a Genetic Algorithm
(GA) and included:

1.

2.

3.

4.

5.

6.

7.

8.

9.

max time* - the amount of “time” that the “ants” explore.

increment - defines how many time steps happen at each iteration of the time loop.

num of ants -the number of “ants” that are exploring the TSP map.

evaporation increment - how many iterations of the time loop are between each evaporation.

evaporation rate - the percentage of pheromone that “evaporates” away.

add pheromone1 -the amount of pheromone that is added when the “ant” moves to a new
node.

add pheromone2 -the amount of pheromone that is added when the “ant” returns along the
path it came - also amount dropped on best path.

dist factor - relates how important the distance of a node is to the “ant”.

pher factor - relates how important the pheromone on a path is to the “ant”.

10. rand thresh -determines how likely the “ant” is to choose based on pheromone.

*max-time was not an optimized parameter, instead it varied based on the size of the map used.

3.2 The Genetic Algorithm

The Genetic Algorithm (GA) used in this program was written by D. Harris and then modified for
use with the Ant Colony described above. It used a Tournament style of elite selection and a two-
point crossover method. The crossover rate used was .7 and the mutation rate was .OOl. It was
run with a population size of fifty for 100 generations. In most cases, results were found much
earlier than the 100”’ generation and the results section specifies what generation the numbers
were taken from. The fitness is recorded as the inverse of the best path length. Finally, each
“chromosome” included 70 genes that were divided among the input parameters as follows:

1. increment - 5 genes range: [1,321

2. num of ants - 8 genes range: [1,256]

3. evaporation increment - 5 genes range: [1, 321

4. evaporation rate - 8 genes range: (0, l]

5. add pheromone1 - 8 genes range: (0, l]

6. add pheromone2 - 8 genes range: (0, l]

7. dist factor - 10 genes range: (0, lo]

8. pher factor - 10 genes range: (0, lo]

9. rand thresh - 10 genes range: (0, l]

The first three numbers were actual binary representations of the numbers while the other six
were found by dividing the intervals into small pieces and taking some amount of those sections
as the parameter based on the binary representation of that amount.

3.3 The Traveling Salesman Problems

The TSPs used in testing this system were both found at the TSPLIB [131. The ones used were
known as Ulysses1 6 and ei15 1 (16-city and 5 l-city maps respectively). Both are given by
coordinates on a two dimensional Cartesian plane and the distances were calculated using the
Pythagorean theorem. The Ulysses1 6 map was used with a max-time value of 50000 and the
ei15 1 map was used with a max-time value of 200000.

4. Results

For the map Ulysses1 6, the optimal solution was found by this algorithm. That solution is of
length 73.99. That path was found early on in most runs of the program. Sometimes as early as
generation 6 (see Table 2).

For the map ei15 1, the optimal solution was not found by this algorithm. The optimal solution
had a best path length of 429.98. The best solution found by this algorithm was actually 432.16
(see Table 1).

dist-factor 8.856 9.756 4.594

pher-factor 5.611 0.039 0.039

rand thresh 0.898 0.965 0.965-

Table I: Parameters found during several generations of a typical run on map ei151

9

Table 2: Parameters found during several generations of a typical run on map ulyssesI

Fitness Values at Each Generation

0.004

0.0035

0.003

2 0.0025
s
I
tr 0.002IL

0.0015

0.001

0.0005

-Minimum Value

-Max imum Va lue

Average Value

Figure I: Fitness values for a typical run on ei1.51 (as seen in Table 1). There were no signljicant
changes after the 38”’ generation.

10

5. Conclusions

We can conclude that this ant system, when optimized by the genetic algorithm can find the
optimal solution for small problems and also, close to optimal solutions for medium problems.

What we can observe from the data is that some of the parameters seem to be more important
than others. For example, in every case, the num-of ants parameter ends up being very large.
However, parameters such as pher-factor are very variable. This leads to the conclusion that
num-of-ants is a more important parameter. Statistical analysis could be used to validate this and
discover which parameters have the most effect.

Additionally, it can be noted that there is not a significant decrease in the best path size from
generation to generation. However, this may be because there are 50 possibilities in each
generation. We can observe that the average becomes better, as well as the worst case (see Figure
1). Because some of the parameters seem much more important than others, this gives each
generation a good probability of getting one of those parameters right in at least one individual. It
is likely that better results for the best path could be found with more limitations imposed on
certain parameters (i.e. the num-of-ants parameter).

6. Future Work

Although the results of this experiment are promising, they are surely just the beginning.
Undoubtedly, even better results would be found with an improved decision-making scheme for
the “ants” and a better local optimization system for the best path. Also, it appears that some of
the parameters have more effect than others. It would be interesting to try and simply optimize
the “good” parameters and leave the “bad” ones out of the GA optimization. Additionally, this
system seems to lend itself easily to integrating some elements of a Simulated Annealing system
into it. Finally, it would be interesting to add in some elements of other AC variations [S].

11

Bibliography

[l] Lin, S. (1965) “Computer Solutions of the Traveling Salesman Problem.” BeZZ Syst. Journal
44,2245-2269.

[2] Lin, S., and B. W. Kernighan. (197 1) “An Effective Heuristic Algorithm for the Traveling
Salesman Problem.” Oper. Res. 2 1, 498-5 16.

[3] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M. N., Teller, A.H. and Teller, E., (1958)
“Equations of State Calculations by Fast Computing Machines”, J. Chem. Phys. 21, 1087- 1092.

[4] Matsuda, S., (1996) “Set Theoretic Comparison of Mappings of Combinatorial Optimization
Problems to Hoplield Neural Networks.“, Systems and Computers in Japan 27,45-59

[5] Goldberg, D., Genetic Algorithms in Search, Optimization & Machine Learning. Addison
Wesley, 1989

[6] Mascato, P., (1989) “On Evolution, Search, Optimization, Genetic Algorithms and Martial
Arts : Towards Memetic Algorithms”, Caltech Concurrent Computation program 158-79.

[7] Dorigo, M., V. Maniezzo & A. Colorni (1991). “The Ant System: An Autocatalytic
Optimizing Process”. Technical Report No. 91-016 Revised, Politecnico di Milano, Italy

[8] Bonabeau, E., Dorigo, M. & Theraulaz, G., Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press. 1999, 39-56

[9] Lin, F., Kao, C., & Hsu, C., (1993) “Applying the Genetic Approach to Simulated Annealing
in Solving Some NP-Hard Problems”. IEEE Transactions on Systems, Man, and Cyberspace 23,
1752-1767.

[lo] Bonomi, E., & Lutton, J., (1984) “The N-city Traveling Salesman Problem: Statistical
Mechanics and the Metropolis Algorithm”. SIAMReview, 26 (4), 55 1 - 569.

[1 l] Dorigo, M. & Gambardella, L., (1997) “Ant Colonies for the Traveling Salesman Problem”.
BioSystems, 43, 73-8 1.

[12] Miihlenbein, H., (1992) “Parallel Genetic Algorithms in Combinatorial Optimization”.
Computer Science and Operations Research. 44 1-456.

[131 http://www.iwr,uni-heidelberg.de/iwr/comopt/software/TSPLIB95/

[14] http://www.keck.caam.rice.edu/tsp/usal3509/

12

Optimizing the Parameters of a
Time-Based Ant System
Approach to the Traveling
Salesman Problem Using a
Genetic Algorithm.

Who Am I?

l Senior: New Mexico State University

l Computer Science Department

l Sandia Summer Intern For Three Years

l Background in Java Programming

l Background in Emergent Behavior Programming

The Project

This project looked for a solution to the
Traveling Salesman Problem using an Ant
System approach.

Further, it optimized the Ant System using a
Genetic Algorithm.

The Traveling Salesman
Problem

A traveling salesman must:

l Travel to many cities

l Take the quickest (shortest) route

l Only visit each city once

l End up back where he started

Number of Possible Paths

Number of Cities Number of Paths

5 120

10 3628800

15 130767436800

20 2432902008176640000

25 15511210043330985984000000

The Ant System

Based on Foraging Patterns of Real-Life Ants:

l Ants move randomly through the map

l Ants drop pheromone

l Ants choose where to go next based on amount of pheromone

l Pheromone evaporates

l Optimal solution is found by ants

l Optimal solution is improved by local search function

The Timed Ant System

This system is based on the time taken between cities.

for time = 0 to max time STEP increment value
for i = 1 to numb& of ants

-

if (ants[i] has time-left to get to the next node)
decrement ants[i]'s time left by increment value-

else
pick which node to move to next, set ants[i]'s time
left and update the pheromone on the edge just passed

Genetic Algorithms

l Evolution Function

l Creates strings of bits that encode the parameters being
evolved

l Gets fitness for strings and evolves based on fitness values

l Fitness Function

l Receives string of bits

l Returns fitness after running the decoded parameters
through the program

The Genetic Algorithm

l Used up to 100 generations of 50 individual bit strings

l Each generation kept the best bit strings from the
previous generation

l Other bit strings made by combining the good ones

l Some random changes allowed in bit strings

l Fitness found based on best path found by Ant System

Parameters Evolved

increment - 5 bits : range: [1, 321
num of ants - 8 bits : range: H. 2561

evaDoration increment - 5 bits : range:
I U

evaporation rate - 8 bits : range: (0, I]
add pheromone1 - 8 bits : range: (0, I]
add pheromone2 - 8 bits : range: (0, l]
dist factor - 10 bits : range: (0, 101
Dher factor - 10 bits : range: (0, 101
L V \ x -I

rand thresh - 10 bits : range: (0, 11

Maps Used

These maps were found at the TSPLIB - an online
resource for Traveling Salesman Problems and solutions

Ulysses 16 - A 16 city map (small)

Ei15 1 - A 5 1 city map (medium)

Results

l Optimal solutions were found for the Ulysses16 map and near
optimal solutions were found for the ei15 1 map.

l Semi-optimized parameters found for Ant System for each map

Conclusions Made

l Optimizing an Ant System with a Genetic Algorithm
can improve the answers found

l Some parameters seem more important than others

l It is easy to get a good answer with 50 input strings

Future Work

l Just the beginning

l Use larger maps

l Put stronger constraints on input parameters

l Emphasize difference between major and minor parameters

l Improve Ant System algorithm

l Optimize Ant System in favor of time taken as well as best
path found

